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Mathematical models of certain flows of fresh ground waters, in a semi-infinite pressurized water-bearing layer, to a salt water 
sea (basin, reservoir, pot hole, etc.), above the surface of which there is a layer of fresh water, are considered within the framework 
of the two-dimensional theory of steady seepage. To investigate them, mixed boundary-value problems in the theory of analytic 
functions are formulated and solved using Polubarinova-Kochina’s method. On the basis of these models, algorithms are developed 
for calculating the squeezing out (that is, the process of the forcing out of the seeping fresh waters by the heavier salt waters, 
leading to deformation of the interface of the liquids) in cases when the ground water flows enter the sea from the side and from 
below. A detailed analysis of the structure and characteristic features of the processes, as well as of the effect of all the physical 
characteristics of the models on the nature and degree of the squeezing out of the fresh water, is carried out using the exact 
analytical relations obtained as well as numerical calculations. In the special case when there is no layer of fresh water above 
the surface of the sea, a comparison of the results of the calculation is given for both inflow schemes, and the nature of the 
dependences of the degree of squeezing out of the water from the initial position of contact of the liquids is discussed. 0 2003 
Elsevier Ltd. All rights reserved. 

Usually, in problems of the seepage of fresh and saline waters in lenses and borders and, also, under 
hydrotechnical installations [l-7], the motion of fresh water is considered in strata, the lower part of 
which is occupied by the heavier, static saline water with an unperturbed surface, which is always 
horizontal. The existence of horizontal, water-permeable segments in the form of the boundaries of 
channels, reservoirs, water cases, drains, etc. is also characteristic of these problems. A similar situation 
is also observed in flow problems in coastal pressurized water-tables [S-16] when the ground water flows 
enter the sea from below and the profile of the sea bottom is also always assumed to be horizontal. 

The problem of the inflow of pressurized ground waters from a horizontal reservoir into a salt water 
basin [17] is an example of a problem which does not fit into the existing classification [5, 61. In this 
case, the initial position of contact between the fresh and saline water is assumed to be vertical. Moreover, 
vertical equipotentials and an interval of leakage are contained in the flow domain which, in the 
aggregate, is not entirely characteristic of problems in subterranean hydrodynamics. This leads to a state 
of affairs where corresponding segments of the boundary to not have a common point of intersection 
in the plane of the velocity hodograph. Methods based on the Christoffel-Schwartz formula are therefore 
unsuitable for application to such problems. Furthermore, this domain of the velocity hodograph, as 
the analysis [l-6] of all possible schemes characteristics of the seepage theory shows, is only encountered 
in one case, that is, in the classical problem of seepage through a rectangular dam [l, 3, 7, 181. 
Polubarinova-Kochina developed an extremely general and effective method [l-7] for investigating this 
problem, which is based on the use of the analytic theory of linear differential equations of the Fuchs 
class [19]. The solution of the problem is obtained in the form of integrals of elliptic integrals [20,21], 
some of which have logarithmic singularities close to each of the singular points, which gives rise to 
well-known additional difficulties of a computational type. Hence, despite the apparent simplicity of 
the scheme for the flow in a coastal water-bearing layer with a lateral discharge, the difficulties in solving 
the problem are completely analogous to those in the problem of a dam. 

In the previous investigations [8-14, 171, essentially no analysis of the effect of the parameters on 
the flow pattern was carried out. 

Both cases (of a lateral inflow and an inflow from below) are investigated below using Polubarinova- 
Kochina’s method. The solution of the problem is initially transformed to a form which is convenient 
for calculations. In the process, the convergence of all the integrals obtained for the geometrical 
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dimensions and the parameters characterizing the seepage being considered is proved using the 
arguments put forward by Polubarinova-Kochina [3]. The effect of each physical parameter of the models 
on the geometrical and seepage characteristics is then analysed using the transformed formulae and 
numerical calculations, the special features and the degree to which water is squeezed out are studied 
and, finally, a complete picture of the phenomena is also given. Finally, in the special case of lateral 
inflow, when there is no layer of fresh water on the sea surface, the results of the calculations are 
compared for both schemes with the same seepage parameters and the form of the dependences of 
the degree to which water is squeezed out from the initial position of contact of the liquids is discussed. 

1. THE LATERAL INFLOW SCHEME. FORMULATION 
OF THE PROBLEM 

Fresh water with a density pl, moving in a semi-infinite pressurized water table, which is situated on 
an impermeable bed of rock salt, is squeezed out in the lower part of the layer by heavier stationary 
salt water of density p2 (~2 > pi). At the same time, the initially vertical line of separation between the 
fresh and salt water in the lower right-hand part of the stratum starts to be deformed, shifting to the 
left towards the flow, forming a so-called tongue of salt water. Steady motion is possible after a certain, 
sufficiently long time and, when the brine quietens down, the line of separation turns out to be the 
streamline for the fresh water [l, 221 and the flow pattern shown in Fig. 1 arises. Under intense exploita- 
tion, when the dynamic equilibrium between the fresh and salt waters is disturbed, the threat of 
penetration of sea water into the water table arises, and the tongue of salt water, on moving in the 
direction of dry land, can reach the water intake. The determination of the position of the boundary 
of separation is therefore of great practical interest. 

We shall assume that the motion of the ground waters obeys Darcy’s law with a known seepage 
coefficient K = const. and occurs in homogenous, isotropic earth, which is taken as being incompressible 
as is the liquid which is seeping through it. The capacity of the water-bearing layer T, the level of the 
salt water in the sea t(0 < t 5 T), the rate of see page Q and the parameter p = p2/p1 - 1 are assumed 
to be given. As is usually done in problems of a similar kind [l-14, 171, we will neglect the effect of 
capillary and diffusion phenomena at the interface of the liquids. 

We introduce the complex flow potential w = cp + iv and the complex coordinate z = x + iy, which 
are dived by KT and T, respectively. It is required to determine the position of the line of separation 
AF of the domain of seepage z and the pair of harmonic functions cp and w, which are conjugate within 
this domain such that the following boundary conditions are satisfied along the segments of its boundary 

AB: x = I,, cp = p(y- t); BC: x = l,, cp = 0; CD: y = T, v = Q 

DF: y = 0, tq = 0; AF: q~ = 0, cp = p(y- T) 
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Here, El and Z2 are the required width and height of the tongue of salt water which has invaded the 
fresh-water layer. 

2. CONSTRUCTION OF THE SOLUTION 

We will now consider the domain of the complex velocity w, corresponding to boundary conditions (1.1) 
which is shown in Fig. 2(a). 

This domain, which is a circular triangle, all the angles of which are equal to zero (a modular triangle) 
is of great significance in the theory of automorphic functions [23, 241. In seepage theory, a modular 
triangle is only characteristic in the case of the problem of a rectangular earth dam, the solution of 
which was obtained for the first time [25, 261 as a solution of a Dirichlet problem and, subsequently, 
more simply by Polubarinova-Kochina [l, 3, 181. From the computational point of view, the case 
considered below is completely analogous to the problem of seepage through an infinitely wide dam 
[l, p. 781, [3, p. 2761. We emphasize that conformal mapping methods, based on the Christoffel- 
Schwartz formula, are ineffective when applied to such domains. 

To solve the problem, we will use Polubarinova-Kochina’s methods, which is based on the use of the 
analytic theory of linear differential equations. An auxiliary variable 5 is introduced and the functions 
z(c), which conformally maps the upper half-plane 5 into the domain z (the correspondence of the points 
is shown in Fig. 2b), the complex velocity w = do/& and, also 

Z = dzld<, F = doIdS (2.1) 

On determining the characteristics of the functions Z and F near the singular points [6, 81, we find 
that, in the case in question, they are linear combinations of two branches of the following Riemann 
function [8, 91 

(2.2) 

It is clear from relation (2.2) that < = c, and 5 = d are regular points for the function Y, and the 
linear differential equation of the Fuchs class corresponding to the Riemann symbol (2.2) therefore 
takes the form 

<(l -i)Y..+(1-2<)Y’-;Y = 0 (2.3) 

It is well-known [8, lo] that Eq. (2.3) has two linearly independent integrals 

Y,(C) = K(C), Y2(0 = KY0 (2.4) 

which from a fundamental system of solutions in the neighbourhood of the point < = 0. Here, K(c) is 
the complete elliptic integral of the first kind, which is considered as a function of the square of the 
modulus k2 = 5, K’(c) = (1 - 6) = K(k2), A? = 1 - 6. Note that K’(c) is a solution containing a logarithmic 
singularity at the point 5 = 0, close to which the asymptotic representation has the form [27] 
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K’(C) = -$nr (2.5) 

The function containing the conformal mapping of the upper half-plane c into the domain of the 
complex velocity w must be expressed in terms of the ratio of linear combinations of the solutions Y, 
and Y2. If such combinations are constructed and use is made of the correspondence of points A, B 
and D in the < and w plane, we obtain 

w = PW(cJ - wr)Yuc) 

Taking relation (2.2) and expression (2.6) into account, we find 

F = iAp(K(6) - iK’(C,))IA(<), Z = iAK’(CYWOh 46) = Cd- C>(a) 

(2.6) 

(2.7) 

whereA > 0 is an unknown constant. It can be verified that the functions (2.1), which are defined on 
the basis of relations (2.7), satisfy boundary conditions (l.l), which are formulated in terms of the above- 
mentioned functions and they are therefore a parametric solution of the initial boundary-value problem. 

Writing down representations (2.7) for the different segments of the boundary of the domain c, 
followed by integration along the whole contour of the auxiliary domain, we obtain the closure of the 
domain of motion z which thereby serves as a check on the calculations. As a result, we obtain the 
expressions 

T = AxK’(lld) Q _ APMW 
J&Gj’ - J&G-) Pf9 

T-t = Al CK((<- ‘)/6),c 
, &VU 

(2.9) 

and the coordinates of the points of the line of separation AF 

Putting 5 = 0 in Eqs (2.10) for the coordinates of the points of the line of separation, we find the 
required dimensions of the tongue 

4 = x(O), 1, = Y(O) (2.11) 

and, also, the flow rate across the segment BC 

Qsc = Q- Apj K(l’c) 
,wMGo 

dc 

The other expressions for the quantities Q BC and l2 provide a check on the calculation: 

Q ‘K(C) 
BC = Apl,(<) 

’ K’(CJ -d<, 1, = t-A/-$ 
0 

o <cl> 

(2.12) 

(2.13) 

3. TRANSFORMATION OF THE FORMULAE TO A FORM 
CONVENIENT FOR CALCULATIONS 

The representations (2.8)-(2.13) contain three unknown constants:A, c(1 c c < -) and d(c c d < -). 
The ratio Q/T serves to determine the mapping parameter d, and, from expression (2.8), we obtain 

K(lld)lK’(lld) = Q(pT) (3.1) 

The parameter c is found from Eq. (2.9). Here, the constant A s first eliminated from all of the 
equations (2.9)-(2.13) by means of the first of relations (2.8) which fixes the capacity T of the water- 
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bearing layer. Relation (3.1) regulates the specification of the physical parameters Q, T and p, and, 
consequently, the domain of applicability of the flow scheme which has been adopted. 

As a result of an investigation of system of equations (2.8) (2.9) using the properties of elliptic 
integrals, it was established that, for a given value of the thickness of the layer t (and, thereby, also of 
the mapping parameter c) and on fixing two of the three quantities Q, T and p, the modulus of the 
elliptic integrals is uniquely followed from Eq. (3.1). The third physical parameter turns out to be 
“floating” in this case: the range over which it changes is determined besides, starting from Eq. (3.1) 
and taking account of the values of Q,, T, and p*, which correspond to the cases when k2 = 0 and 
k2 = 1. Moreover, for a fixed value of the flow rate Q when the density p is reduced and the capacity R 
is increased by the same factor, the degree of squeezing out increases by the same factor. This behaviour, 
which is completely natural from the physical point of view, follows directly from relation (3.1) and 
formulae (2.10): in this case, the right-hand side of Eq. (3.1) and the left-hand sides of Eqs (2.8) are 
not changed and, consequently, the unknown constant A and d also remain as before. Such an analysis 
is permissible when one of the three parameters: Q, p or T is fixed and the two other parameters are 
varied in such a way that the ratio Q/(pT) does not change. The circumstance considerably extends the 
range of variation of the input parameters of the model. 

The principal computational difficulty with the problem lies in the fact that the integrands in relations 
(2.9)-(2.13) have, as has already been mentioned, logarithmic singularities in the neighbourhood of 
the point 5 = 0 and, in addition, they are infinite at the limits of integration. As far as the points 
5 = c and 5 = d are concerned, it is clear from relations (2.9)-(2.13) that all the integrals are convergent 
at this point. The finiteness of the quantities Ii and l2 and, also, of expression (2.12) and (2.13) for the 
flow rate then follows from representation (2.5). 

For computational convenience, we introduce the notation a = l/d and /3 = l/c (0 < a c p I 1) and, 
following Polubarinova-Kochina [3, p. 2781, we replace <by corresponding expressions for the different 
integrals, which make the integrands in expressions (2.9)-(2.13) finite at the integration limits and, in 
fact, we put 

< = sin2t when O<<<l; c = l-l/~, z = sin2t when -m<<<O 

< = l/z, z = p+(l-f3)sin2t when l<<<c 

As a result, we arrive at the following computational relations 

“*K(P 
T-t = A,& j 

1 cos2t) cos t 

o f3-a+&sin’t 
dt 

x(t) = Z,(t;a,,(3,), y(t) = I,(t;a,,f3,), OStln/2 

1, = x(rc/2), 1, = y(M2) 

n’2K(f!l + p 
eL#c = Q-APJE j 

,sin2r)cost 

o p-a+&sin2t 
dt 

Qac = pZ,(n/2; a,p), 1, = t-Z,(x/2;a,P) 

Here, 
a1 = l-a, PI = 1-p 

Z,(t; a, p) = Aj 
K( sin2t)sintcost 

O( 1 - asin*t) J---= 

dt, 

1 - psin r 

z,(t; a, P) = Aj 
K(cos2t)sintcost dt 

0(1 -asin*?) 1 -pm t 7 



742 E. N. Bereslavskii 

px 104 I, x 104 

65 859 
70 1444 

101 3900 
165 8100 
321 17268 

Table 1 

l, x IO4 Qsc x lo4 T x 103 I, x 104 I, x 104 Qr,c x 10“ 

832 71 605 368 367 76 
1386 61 679 1041 997 60 
3465 44 997 4106 3615 44 
5802 39 1662 14352 9982 39 
7824 38 3268 60405 26012 37 

Qx lo4 1, x 104 I, x lo4 

28 17974 7905 
46 10445 6581 
87 4401 3825 

130 1666 1593 
152 211 206 

Table 2 

Qsc x lo4 t x 10’ I, x 104 l2 x lo4 Qac x 104 

12 345 2513 2094 75 
20 550 3671 3122 63 
41 762 4455 3863 45 
85 942 4747 4151 19 

143 loo0 4766 4170 0 

When evaluating the integrals, it is possible, by expanding the integrands in power series in the small 
parameters a and p, to use the well-known formulae [27] 

xl2 r/2 

I K(sin2t)sintdt = 3, j K(cos2t)sintdt = 2G 
0 0 

where G = 0.915966 is the Catalan constant. 

4. CALCULATION OF THE FLOW SCHEME AND ANALYSIS 
OF THE NUMERICAL RESULTS 

The flow pattern, calculated for T = 1, p = 0.0105, Q = 0.009 and t = 0.7623, is shown in Fig. 1. The 
results of calculations of the effect of the governing physical parameters p, Q, T and t on the magnitudes 
of 1i, lz and QBc are presented in Tables 1 and 2. In each of the three blocks of the tables (they are 
separated by vertical lines) one of the above-mentioned parameters is varied (within the permissible 
range) and the values of the remaining parameters are fixed (the basic version): T = 1, p = 0.0105, 
Q = 0.009 and t = 0.7623. The graphs of the quantities Ii (curve 1) and Z2 (curve 2) as functions of p, 
T, Q and t are shown by the solid lines in Figs 3-6. The dashed lines correspond to the special case 
when t = T when there is no layer of fresh water over the sea surface. 

An analysis of the data in the tables and the graphs leads to the following conclusions. 
An increase in the capacity of the water-bearing layer, the thickness of the salt-water layer and the 

density of the saline waters, and a reduction in the flow rate increase the extent to which the fresh water 
is squeezed out. 

The identical qualitative form of the graphs of Ii and l2 as functions of the parameters p, T and t is 
noteworthy: an increase in the density p2 of the salt waters, the capacity of the pressurized layer T and 
the thickness of the salt-water layer t leads to an increase in the dimensions of the tongue of salt water. 
For instance, when the parameters p is increased by a factor of 4.9, the quantities Ii and I2 increase by 
a factor of 20.1 and 9.4 respectively. On the other hand, an increase in the flow rate Q by a factor of 
5.4 leads to a decrease in El and Z2 by a factor of 85.2 and 38.4 respectively. 

The capacity of the water-bearing layer is found to have the greatest effect on the extent to which 
the fresh water is squeezed out. It can be seen that, when T is increased by a factor of 5.4, the quantities 
Ii and l2 increase by a factor of 164 and 73, respectively. At the same time, the height of the tongue can 
reach 80% of the capacity of the layer. 

For all of the blocks of the tables, it is noteworthy that the approximate equality Ei = Z2 is satisfied in 
the case of small values of p and T and large values of Q. On the other hand, for large values of p and 
T and small values of Q, we have 1i = 2.212. 
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The behaviour of the dimensions of the tongue as a function of the thickness of the salt-water layer 
in the sea is of particular interest. It is clear from the graph in Fig. 6 that the dependences of Zi and l2 
on t are qualitatively similar while, for a fixed value oft, the width of the tongue always exceeds its height 
by 14-20%. 

The flow rate across the segment BC decreases as p, T and t are increased. At the same time, while 
the flow rate QBc only changes by a factor of two when the parameters p and T vary, an increase in the 
salt-water level leads to a reduction in it by a factor of almost 19. Conversely, increasing the flow rate 
Q leads to a considerably increase in the flow rate Q,,, which is completely natural from the physical 
point of view. For instance, when the parameter Q changes from 0.0028 to 0.0152, the flow rate QBc 
increases by a factor of almost 12 and, at the same time, the ratio Q&Q increases from 0.43 and 0.94. 
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p x 104 

66 

83 

114 

179 

417 

c n T 0.5 = ’ 
t  

I, x 103 I, x 103 

180 176 
545 -680 
235 227 
598 566 
454 402 
711 429 
885 620 
988 279 

1621 805 
2125 120 

Q x 104 

20 

52 

84 

116 

148 

Fig. 7 

Table 3 

I, x 103 1, x 10’ 

1828 802 
2533 100 
1059 673 
1048 260 

489 425 
731 412 
257 246 
609 549 
166 163 
550 -668 

T x lo* 

6 

83 

114 

179 

417 

1, x 10’ I* x 104 

119 1161 
358 -4486 
196 1887 
499 4704 
516 4566 
807 4886 

1584 11072 
1760 4985 
7743 33535 
8847 5000 

5. A SPECIAL CASE 

In the case when the points B and C merge in the t and 5 planes, which corresponds to parameter values 
t = T and c = 1, we have a flow scheme in which there is no layer of fresh water on the sea surface. 
The results for this case are obtained from formulae (3.2) when p = 1, pi = 0. In this case, Eq. (2.9) 
is transformed into an identity and, from Eqs (2.12) and (2.13) it follows that QBc = Q. 

The flow pattern, calculated for T = 1, Q = 0.01 and p = 0.01, is shown in Fig. 7. The results of 
calculations of the effect of the governing physical parameters p, Q and Ton the dimensions Ii and l2 
with the basic version T = 1, Q = 0.01 and p = 0.01 are shown in Table 3 (the upper rows of value of 
I1 and &). The graphs of the quantities Ii and l2 against p, Q and T are shown by the solid lines in 
Figs 8-10. 

It can be seen that the dependence of the height of the tongue l2 on the capacity of the pressurized 
layer T turns out to be close to linear. For 0 < T < 5 and p = Q = 0.01, we can take i2 = 0.95(T - 
0.78). It is also noticeable that, in the case of the above-mentioned values of T and Q, we have an almost 
quadratic relation 1; = +p, where 17 <p I 20. 

6. THE SCHEME FOR INFLOW FROM BELOW 

Formulation of the problem and its solution. The traditional scheme [8-141 for the flow of fresh ground 
waters into a coastal pressurized water-bearing layer which enters the sea from below is shown in 
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Fig. 11. The problem reduces to determining the complex potential o(z) with boundary conditions (1.1) 
with the sole difference that the conditions for the segment AB are replaced by the conditions y = T, 
cp = 0. 

The required functions 2 and F are determined by the following Riemann symbol 

p[:,2j,2-j :i] = ir-cGm+2 ;* p,sj = &ii3 (6.1) 

The linear differential equation of the Fuchs class corresponding to (6.1) 

r(l-s)Y”+(;-<)Yl = 0 

has two linearly independent integrals 

Y, = const, Y, = arcsin./l - < 
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The conformal mapping of the upper half-plane of the auxiliary parametric variable < (Fig. 2b) onto 
the complex velocity domain (Fig. 2c) has the form 

w=- iRp 
2 arcsin Kc 

Taking relation (6.1) and expression (6.2) into account, we find 

(6.2) 

iA 
F = A(c)’ 

z = -2arcsinJITS 
w A(C) ’ 

A(C) = (c-<>m, As.0 (6.3) 

The expressions for the governing parameters of the model, corresponding to expressions (2.8) and 
(2.10), take the form 

T = 2Aln(&+ m), e = n;A 
phG3 hf=i 

and the coordinates of the points of separation AD (- I 5 I 0) are 

(6.4) 

(6.5) 

Unlike the preceding scheme and formulae (2.8), in this case formulae (6.4) enable us to express the 
unknown constants in terms of the governing parameters of the model in the explicit form 

a = ch -*‘!!, 
Q 

A = !&,‘?i 
Q (6.6) 

Transforming formulae (6.5) in the same way as in Section 3, we arrive at the following computational 
functions, corresponding to formulae (3.2) 

al2 
4Aa 

x(t) = - I 
cost 

~ 1 - a, sin*t 

ln 1 + sint 
P costdt 
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(6.7) 

(a-’ - &5)2k+1 

(2k + 1)’ I 

(6 s) 

A well-known result [27, p. 451 has been used here. 
Note that, since, in the case being considered, there is a common point of intersection of the boundary 

segments in the complex velocity domain (Fig. 2c), formulae (6.7) and (6.8) can also be obtained by 
inversion of the domain w. 

7. ANALYSIS OF THE NUMERICAL CALCULATIONS AND 
COMPARISON OF THE RESULTS FOR THE TWO SCHEMES 

The flow pattern, calculated for the same values of the parameters T, Q and p as in Fig. 7, is shown in 
Fig. 11. The results of calculations of the effect of the governing physical characteristics p, Q and Ton 
the quantities 1i and Z2 (negative values of 12, corresponding to the scheme with inflow from below, indicate 
that, in the flow plane, point B, that is, the left-hand boundary of the sea bottom, is displaced to the 
left of the ordinate) are shown in Table 3 (the lower rows). The graphs of the degree of squeezing of 
Zi (curves 1) and I, (curves 2) against p, Q and Tare represented by the dashed lines in Figs 8-10. 

The analysis of the dependence of the required quantities on the above-mentioned physical parameters 
reduces to the following. 

As in the earlier problem, an increase in the capacity of the layer leads to an enlargement of the tongue. 
It is noteworthy that the dependence of the width Ii on T is qualitatively similar here to the case of 
a lateral inflow (Fig. 10). However, compared with the first scheme, the form of the dependence of 
the quantity l2 when the parameters p and Q are varied, changes in a radical manner: its growth is 
now caused by a decrease in the density of the saline waters and an increase in the flow rate (Figs 8 
and 9). 

As previously, it is the capacity of the layer which is found to have the greatest effect on the width 
I,. For instance, when T is increased by a factor of 6.3, the parameter Ii increases by a factor of 25. The 
ratios Zf)/Zil) and Zp)//$‘), where the superscript indicates a calculation using the first or second scheme, 
change by factors of 2.5 and 25 respectively for the values of T presented in the table. 

It is clear from the graphs presented in Figs 9 and 10 that the dependence of l2 on Q and T is linear, 
and one can take l2 = 0.32(Q - 0.09) and l2 = 0.48 in the ranges of values of Q and T considered. For 
small values of p and T and large values of Q, the quantities Ii and l2 differ by just 2%. While Zi < 12, 
that is, the abscissa of point B in the z plane is displaced to the left from the ordinate. 

Conversely, in the case of large values of p and T and small values of Q, the width Ii is now greater 
than the quantity l2 by a factor of 18 and, when Q = 0.002, it is even 25 times greater. 

I wish to thank M. G. Khublaryan for critical remarks and his interest. 
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